Cauchy Problem for Forced Harmonic Oscillator

نویسندگان

  • RAQUEL M. LOPEZ
  • SERGEI K. SUSLOV
چکیده

We construct an explicit solution of the Cauchy initial value problem for the onedimensional Schrödinger equation with time-dependent Hamiltonian operator for the forced harmonic oscillator. The corresponding Green function (propagator) is derived with the help of the generalized Fourier transform and a relation with representations of the Heisenberg–Weyl group N (3) in a certain special case and then is extended to a general case. A three parameter extension of the classical Fourier integral is discussed as a by-product. In addition, we also solve an initial value problem to a similar diffusion-type equation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Cauchy Problem for a Forced Harmonic Oscillator

We construct an explicit solution of the Cauchy initial value problem for the onedimensional Schrödinger equation with a time-dependent Hamiltonian operator for the forced harmonic oscillator. The corresponding Green function (propagator) is derived with the help of the generalized Fourier transform and a relation with representations of the Heisenberg–Weyl group N (3) in a certain special case...

متن کامل

COMPARING NUMERICAL METHODS FOR THE SOLUTION OF THE DAMPED FORCED OSCILLATOR PROBLEM

In this paper, we present a comparative study between the Adomian decomposition method and two classical well-known Runge-Kutta and central difference methods for the solution of damped forced oscillator problem. We show that the Adomian decomposition method for this problem gives more accurate approximations relative to other numerical methods and is easier to apply. 

متن کامل

General Even and Odd Coherent States as Solutions of Discrete Cauchy Problems

The explicit and exact solutions of the linear homogeneous difference equation with initial conditions (Cauchy problem) are constructed. The approach is quite general and relies on a novel and successful treatment of the linear recursion appropriately cast in matrix form. Our approach is exploited to solve the eigenvalues problem of a special set of non-Hermitian operators. A new class of gener...

متن کامل

Solution of strongly nonlinear oscillator problem arising in Plasma Physics with Newton Harmonic Balance Method

In this paper, Newton Harmonic Balance Method (NHBM) is applied to obtain the analytical solution for an electron beam injected into a plasma tube where the magnetic field is cylindrical and increases towards the axis in inverse proportion to the radius. Periodic solution is analytically verified and consequently the relation between the Natural Frequency and the amplitude is obtained in an ana...

متن کامل

Gelfand-shilov Smoothing Properties of the Radially Symmetric Spatially Homogeneous Boltzmann Equation without Angular Cutoff

We prove that the Cauchy problem associated to the radially symmetric spatially homogeneous non-cutoff Boltzmann equation with Maxwellian molecules enjoys the same Gelfand-Shilov regularizing effect as the Cauchy problem defined by the evolution equation associated to a fractional harmonic oscillator.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008